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ABSTRACT

R. J. Aumann has stated and rigorously proved the value equivalence theorem
for exchange economies with a non-atomic continuum of traders. The analogous
result is established here for nonstandard exchange economies using Abraham
Robinson’s calculus of infinitesimals. The proof is patterned after a short
heuristic argument given by Aumann.

I. Introduction

In [1], Aumann stated and rigorously proved the value equivalence theorem
for exchange economies with a non-atomic continuum of traders. Since the proof
was complex and involved, he also gave a heuristic argument. His nonrigorous
argument is based on a naive notion of infinitesimals. We shall prove a value
equivalence theorem for nonstandard exchange economies, using Robinson’s
calculus of infinitesimals, i.e., nonstandard analysis. Our argument follows
closely Aumann’s original intuitive argument.

Nonstandard exchange economies and the associated nonstandard concepts of
the core and competitive equilibrium were first defined in Brown-Robinson (3].
In that paper, they proved the equivalence between the nonstandard core and
the set of nonstandard competitive allocations, i.e., an allocation is in the core iff
it is a competitive allocation. In a second paper [4], using the core equivalence
theorem for nonstandard exchange economies, they showed that core allocations
in large standard economies are approximate competitive allocations. The
interested reader is referred to either of these two papers for an introduction to
nonstandard analysis and a discussion of nonstandard exchange economies.

We should note that the existence of a value allocation follows from the value
equivalence theorem, and the existence of nonstandard competitive equilibria
shown by Brown in [5].

* The research in this paper was supported in part by the National Science Foundation and the
Ford Foundation.
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Before stating and proving our major theorem, we shall need the following
definitions.

II. Definitions

Let *R, be the d-fold Cartesian product of *R, the nonstandard extension of
R, and *{1, be the positive orthant of *R,. If X and § are vectors in *R,, then we
shall write £ = y when the distance between x and y is infinitesimal in the metric
defined by the sup norm. X = y means x; = y; for all i; X >y means ¥ = y and
x; >y forsome i; ¥ >y means x; >y, forall i. ¥ = § means x; 2 y; or x, = y, for
all i; X= y means X = y and x; is greater than y; by a noninfinitesimal amount
for some i; = y means x; is greater than y; by a noninfinitesimal amount for all
i. The vector which is 0 in all components except the i-th and 1 in the i-th is
denoted by é'.

By the norm of a vector £ = (%, -, %), we mean the sup-norm | x|/ =
max,s;=4| % |. A nonstandard vector is said to be finite or near standard if its
sup-norm is less than some standard number. If X is a finite vector, then there
exists a unique standard vector, called the standard part of x, denoted by °%,
where °X = &.

*N will denote the nonstandard extension of N, the integers, and *N — N is
the set of infinite integers. If § is an infinitesimal, then we shall often write § =0,
with similar notation used for infinitesimal vectors.

Let T be an internal star-finite set. T will be called the set of traders or agents.
We shall always assume that T is infinite, i.e., the internal cardinality | T |=
w €E*N-N.

A coalition is an internal subset of traders.

A coalition S is negligible if | S |/w =0.

All agents are assumed to have the same consumption set which is *(l..

An assignment is an internal map from T into *(l,.

A trader is defined by his initial endowment, an element of *Q, and his
preference relation, a binary relation on *Q,.

A nonstandard exchange economy, €, is a pair (I, P) where I(t) is an
assignment and P(¢) is an internal map from T into the family of internal binary
relations on *Q,. We will often denote P(t) as >.. That is, >, is the preference
relation of trader ¢ and I(t) is his initial endowment.

An allocation, X, is an assignment such that X (¢) is finite for each t € T. It
follows that the norm || X (¢)| is uniformly bounded.

An assignment X is feasible for a coalition S if
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$1SXO=5 S 10).

An assignment X is strictly feasible for a coalition S if

lS[EX(t) ,;@51(:), e, 3 X0=310).

If § =T, then we will say that X is feasible or strictly feasible.
If %,y €*, then x>, >y iff for all w =% and for all 7=y, w>z If
P € *Q,, then

B,(t)={x€*Qy:p-T=<p-I(1)}.

Given a feasible allocation X(t), (X, p) is a competitive equilibrium for the
economy & = (I(t),{>.}.er) iff p is finite, p> 0 and there exists a coalition T,
with | T,|/| T| =0, such that for all t € T — Ty, X(t) € B,(t) and y & B,(t) for
any y>, > X(t). If (X, p) is a competitive equilibrium, then we say that X is a
competitive allocation and p is a competitive price system.

If >, is a preference relation over *Q,, then a utility (function) for >, is an
internal map u, : *(, — *R such that for all X, y € *Qg, x> iff u,(¥)> u,(y). If
{>.}.er is an internal family of preference relations, then an internal family of
utilities {u,}.cr is said to represent {> },cr if for each ¢ € T, u, is a utility function
for >..

If {u}.er is a representing family for {>.},cr, then & can be expressed as
(I(t),{u}cr). We now use & to define a star-finite internal game %, in
characteristic form, over T. Let $#(T) be the family of internal subsets of T or
coalitions of T. Then ¢ = (V, $(T)) whete V : #(T)— *R is defined as follows:
Given S € #(T), V(S) = max(l/w)Z.esu. (Y (1)) where Y ranges over all assign-
ments with 2,5 Y (1) = 2,e51(1).

The Shapley-value is an a priori evaluation of a finite game for each player. A
brief discussion of the Shapley-value and its properties is given in Appendix A of
[2]. By transfer, the Shapley-value of ¥ is well defined and we denote it by @v. Of
course, % and hence ¢v depends on {u,},e+ and in general different representing
families define different games.

A value allocation with respect to & = (I(¢),{u.}.er) is a feasible allocation X
such that for each § € #(T), Z,esov(t) = (1/w)Z,esu, (X (). It is important to
note that a value allocation depends on the representation of the preferences
{>r}rET‘

Debreu [6] defines a (standard) smooth preference relation over Q, as a binary
relation over (), having a quasi-concave C? standard utility with a strictly
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positive gradient and indifference surfaces with everywhere positive Gaussian
curvature.

A uniformly smooth family of (standard) preferences was first defined by
Aumann [1]. In particular, he considered the following example of a uniformly
smooth family, which we shall call a precompact smooth family. A family of
standard utilities {u,}.es on Qq (i.e., for all s € S, u, : d,— R) is said to be a
precompact smooth family if:

a) Each u, is smooth (in the sense of Debreu), the bounds on compact sets
being uniform over S.

b) The u, are bounded over £, uniformly in s.

¢) {u.},es is contained in a compact subset of the space % of C? utility
functions on 2, endowed with the topology of C*-uniform uniform convergence
on compact sets.

If ¥ € Q,, then a C" utility (function) u on €, is called concave over (Q, at X
(or concave at x) if for all y € Q,, u(§)— u(x)=Vu(x)-(y — x) where Vu(x) is
the gradient of u evaluated at X.

III. Assumptions

) |T|=wE€*N-N.

2) I(t) is an allocation.

3) (/w)Zer(t) = 0.

4) For all t € T, I(t)#0.

5) The preferences {>},cr are represented by an internal family of utility
functions {u }.er Where {u,},er is contained in the nonstandard extension of a
family % of standard utility functions.

Aumann in [1], lemma 15.1, has shown that if {u,}.cs is a precompact smooth
family of standard utility functions, then for every y > 0 there exists a family of
utilities {i,},es such that:

a) The &, are uniformly bounded.

b) The 4, are C' on Q..

¢) The gradients Vi, are, on compact sets, uniformly bounded and uniformly
positive, i.e., for every compact set K there exists vectors @ and b, where @ >0
and b >0 such that for all s € S, for all € K, a =Vii,(§) = b.

d) Each i, is concave over ), at each X such that | X || =y.

A family of utilities satisfying (a), (b), (c), and (d) above shall be called
essentially concave in B,(0)={x € Q. :| x| = y}.

By a representing family of utilities {u},c; we shall mean a family
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satisfying Assumption 5 such that the standard utilities & in & satisfy at least
Properties a, b, and ¢ above and & is compact in the topology of C'-uniform
convergence on compact sets. If Property d also holds, we shall say that the
family {u,},cr is essentially concave in *B, (0).

IV. Statement of the Theorem

Let € =(I(t), {>.}.er) be a nonstandard exchange economy satisfying the
assumptions in Section III.

THEOREM. a) Given a nonstandard competitive allocation X for &, there is a
v >0 such that if {u.}er is a representing family of utilities essentially concave in
*B, (0), then there is an internal family of weights {a.},cr with a,= 0 for each t
such that X is a value allocation with respect to the family of utilities {au,}ie 1.

b) If {u}.cr is a representing family of utilities and X is a value allocation with
respect to {u,},e1, then X is a competitive allocation.

V. Proof of Theorem

LemMA 1. Let {u.}icr be a representing family of utilities. Given a coalition
S CT and an allocation Z(t), let € ={Y : Y is an assignment and Z,csY(t) =
SiesZ(t)). If X€ € and Z.csu(Y(#)) = Ziesu, (X (1)) for all Y € €, then
i) For every v € *N — N, maxes || X (¢)|| < v. Thus max, g || X(t)|| is finite.
it) There exists p € *Q, such that
a) p is finite and p=0,
B) Given t €S, if X;(t)#0, then p, =Vu,(X(t)), and if X;(t)=0, then
pi = Viu (X (1)).

Proor. Suppose for some s€ S and j=d, X;(s)= v where vE€*N - N.
Then |S|E*N-N since Z is an allocation and X €% Let A,=
{teS:| X(@)||<n}.If| A, |is finite for all n € N, then there existsap € *N - N
such that | A, [/|S["*=0 and p/|S|"*=0. Let | x|, ==/, % if ¥ € *Q.. Since
preferences are monotonic, we have Z,csX(t)=Z,esZ(t) s0 Zies | X (#)]i =
Sies|| Z(t) . But

! 1
ST XOh= 57 S IX0)

g7 2, 1XOh= ﬁ@;}%nxu)nl =S4 ,‘S’,*P pZ1p.
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This contradicts the finiteness of (1/| S [)=.es|| Z(t)|,. Hence, for some n, € N,
| Al € *N — N. Let 8 = min(»,| An|); choose B C A, with | B | = 6, and define a
new allocation

X(t) —6g for t=s

X(t)+é fort€B
w(r)
X(t) otherwise.

Since the u, are standardly bounded, u,(X(s)) and u,(W(s)) differ by only a
finite amount. The u, are near standard on any compact standard set, hence
they are near standard on (X € *Q,:| x| =max.cs || W(t)||). Therefore,
minep [ (W(t))— u, (X(#))] 20, and Z,esu, (W(t))Z Z,esu:(X(¢)) which con-
tradicts the definition of X (¢). Thus, for every v € *N —~ N, max,cs || X ()] < ».

For part (ii) of the lemma, suppose for some j =d and s € S that X;(s)>0.
Define a vector AX where Ax;, =0 for i#j and AX; = 8 with 0< 8 < X;(s). If
r€S and r#s, then the assignment Y(¢t) where Y(t)= X(¢t) for t#s or
r; Y(s)=X(s)—Ax; and Y(r)= X(r)+Ax belongs to %. Therefore,
Ziesu, (Y(1)) = Zesu, (X (t)). Thus,

u (X(r)+ A%) — u(X(r)) _ u(X(s))~ w(X(s)~ A%)
é = 8 ’

which implies that Vi, (X(s))Z= Viu.(X(r)). If X;(1)=0 for all tE€ S, let p; =
max.es Vi, (X (t)). If there is a t € S with X;(¢t) >0, let p; = V;u, (X (¢)). Clearly, p
is well defined and p; = V,u, (X (¢))= 0 for all j =d and for all t € S.

By part (i), X(¢) is finite for all t €S, thus, for all j=d and s €S,
Viu (X(s)=Vu,°X(s))>0. Hence, for each j=d, p=0 and max,es
Viu,(X(s)) is finite, i.e., p is finite.

DEeFinITION. Given S, Z, X, {u,},er, and p as in Lemma 1, we write (X, p)E
M(s, Z,{u},er), and we say that X maximizes utility for S.

ProposiTION 1. Let {u.},er be a representing family of utilities, i.e., F satisfies
the assumptions of Section III. Given a coalition S C T with |S|€*N — Nand an
allocation Z(t) with

1
TS| ; Z(t)=0,
let (X,p)E M (S, Z,{u.},cr). Then for each y €*Q, and t €S,

w(y)—uw(X(@) = p-(y—- X))
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For the proof we need the following lemma given the hypotheses of the
Proposition.

Lemma 2. If A is a finite vector, there is an allocation W such that Z,esW(t) =
A, foreacht € Sandj = d, W;(t) =0 and W;(t) = 0 if X;(t) = 0, and moreover

> w(X()+ W) - u(X(t)=p-A.

1ES
Proor. Since the utilities are increasing

-E,—;—lz X(:)=,T1,‘552(t)»0.

1ES

For each j=d, let S, ={s € S: X;(s)= %;/2}. Then | S;|€ *N — N. Let W,(t)=
A;/|S;|if t € S, and let W, () = 0 otherwise. By Lemma 1 and the properties of
%, there exist for each t € S a vector £(t)=0 such that

u(X()+ W) —u(X()=@+e@) W().

Letting £o = max,es || £(t)], we have

R

.;Sg(t).W(t)lgeogsélm(t)|=soél&l 0.

The rest is clear.

ProoF OF ProposITION. Assume there is a y € *(), and a t, € S for which the
proposition is false. The utilities are bounded, X (t,) is finite, and p= 0, so y is
finite. Choose W(t) as in Lemma 2 for t €S —{t;} so that Z,c5_,,W(t)=
y — X (o). Then

> WX ()= W)~ (X)) = = 5 (- X(1),

teS—{1

while by assumption,

U(X (fo) + (¥ = X(10)) — uo(X (1)) Z p - (¥ — X (80)).

This contradicts the definition of X.

LemMa 3. Given S CT where |[S|E*N =N, let (Y,p) € M(S, I {u}ic1). As-
sume (1|S|)Z,esY ()= 0. If X is a feasible allocation for S such that
WS DZiesudX ()= (1/| S |)Ziesu(Y(t)), then there exists an S, CS with
[So|/|S|=0 so that for all t €S — So, u,(X())=u(Y())+p-(X(t)— Y(2)).
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Proor. Since X and Y are feasible on S, p - (1/| S |)Zies (X (1) = Y(£))=0.
Let

S, ={teS: u(X@) - u(Y)=p - (X(t)- Y(t)—1/n}.
Clearly, S, CS,.; for each n €*N. If n €N and | S, |/| S|= 1/n, then

I_;—l;?(u‘(X(t))— ut(Y(t)))SlTll‘;s"(p . (X(t)— Y(t))— l/n)

1< (L N A
+mtesz_s"p-(xm—Y(r))—p-(,s'gs(xm Y1) s
Hence,

5] S WX O)= 5] S uYO) =1,

=N

But this is impossible. Therefore, there isa v € *N — N with | S, |/|S|<1/v. It
follows from Proposition 1 that for all t€S-S, w(X(t)—u(Y(t))=
p-(X()=Y(1)).

Lemma 4. Let S be a subset of T with |[S|E*N—N, and let X be an
allocation which is feasible on S such that (1/|S |)Z.es X (t) = 0. Then there is an
allocation Z (t) which is strictly feasible on S such that Z(t)= X(t) forallt € S.

Proor. Let a; = (1/|S|)ZiesX;(t) and let A; ={t €S : X;(t)= a;/2}. Then
|A;|/|S|#0. For each t €S and j = d, let

X0+ 7 S 06 - X(6) i 1€ 4,
Z(t)—{

X;(t) otherwise.

Since | S |/| A; | is finite and (1/] S |)Zies (Ii(1) — X;(¢)) =0, Z;(t) = X;(¢) for all
j=d and all 1t € S. Clearly, Z(t) is strictly feasible on S.

LemMa 5. Let (X,p)€ M(T, L {u}.er) and let S be a subset of T such that
|S|E*N—N, X is feasible on S, and (1/|S|)Z.esX(t)=0. Let (Y,d)€E
M(S, L{u}ier). Then p =q.

Proor. By Lemma 4, there is an allocation Z(t) which is strictly feasible on §
such that Z(t)= X(¢), for all t € S. Therefore,

tes

SIS X O) =57 S (Z() S g S (Y O).
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On the other hand, (X,p)EM(S X {u}er) and (1/|S|)ZesY(t)=
(1/]S])ZiesI(t) = (1/|S|)Z:es X (). Again by Lemma 4 (using X instead of I)
there is an allocation W with Z,csW(t) = Z,es X (t) and W(t)= Y(¢) for each
t € S. Therefore,

1 1 )=
S u(YO) =15 2 uW)=,

o:l»—=

2, w(X().

Thus, (1/]S|)Ziesu (X ()= (1/|S|) Ziesu(Y(t)), so by Lemma 3 there exists
§'CS with [S'|/|S|=0, such that for all t€S-S’, u,(X(t))— u(Y(t))=
q - (X ()= Y(t)). Applying the same lemma to Y(t) and (X, j) we see that for
some $”CS with |S"|/| S |=0 we have for all t € § — S”, u,(Y(t))— u (X (¢)) =
p-(Y(1)— X(t)). Let So=S'US", then for all t € S — So, u, (X (1)) — u,(Y (1)) =
g - (XO)=Y@)=p-(X()= Y(1)) and | So|/| S |=0.

For all t € T and for all X € *Q,, w.(X)— u(X(t))< p - (X — X(t)). Hence for
all t€ S-S,

U (%) = (Y (1)) = u () — w (X () + u(X (1)) — w (Y (1))
X(O)+p-(X(t)-Y(t)
Y()).

2/\

pr(x—
sSp-(X-
Fix j with 1 =j = d. Since (1/|S|)Z,esY(t)2 0 and | So|/| S | =0, there exists a
1t € S — So with Y;(#,) % 0. Thus, by part (i) of Lemma 1, V,u,(Y (1)) = G On the
other hand, °u,(’Y(t)+8¢)—°u,(Y())=°58 for any real 8§ with |§|<
IOYj(tl)‘. Thus, ﬁi = Vj°u,,(° Y(t1)) = q-j for eaCh ] = d.

LemMMA 6.  Given a family of utilities {u.}.c+ as in Proposition 1, let V be the
corresponding game and let (X, p) € M(T, I, {u.}.cr). Let S be a subset of T such
that | S| € *N — N, X is feasible on S and (1/| S |)Z.es X (t)% 0. Then for every
LES,

V(S)= V(S ~ (1) = - [u X () + 5 - (I(15)~ X (1) + ]
where ¢ = 0.

Proor. Let(Y,q)€ M(S, L{u}er)andlet (Z, )€ M(S — {to}, I {tt}rer). By
Lemma 5, § = p = [. Moreover,

Y(t0)+‘ESZmY(t)=I(to)+ > I(t)

tES—{1g}
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and therefore

2 (YO=-zm)= 2 (YO-I1)=1(t)= Y(t).

teS—{tg}

By Lemma 2, there is an allocation W such that for each t € § —{t,} and j = d,
W,(t)=0andif Z;(r) =0, W;(t) = 0; moreover Z,cs_iq W(t) = I(t;)~ Y (%) and

> W(ZOF W)= u(Z@O)=T- ()= Y (1))

teS—{tg

Therefore

2 w(Y®) =2 w(Z@)=T-I(t)= Y(t)=p - (I(%)= Y (t).

teS—{to} S—{to}

Similarly, however,

S wze) -3

1€S — {19} —{to

, u (Y ()= G- (Y(to)~ I{t0)) = — p - (I(ts) = Y(1))-

Hence,

2u(Y()~ 3 w(Z(®)

teS S —{to]

=u(Y()+ 3 w(Y(0)= m(Z(0) = (Y (@) + 5 - (1)~ Y (1)

But u(Y(to)) = u(X(t))+ p - (Y(to)— X(t)). This follows from the fact that
p = q and Proposition 1. Hence

o(V(S)— V(S —{t}) = gsu,(Y(t))— 2 w(Z@)

S—{to}

= Uy(X(t)) + p - (I(t0) = X(t0)).
LemMa 7. For any S CT and any t, € S, w(V(S)— V(S —{to})) is finite.

Proor. Choose +, €S —{f}, and let I'(t)=1I(t) for t#¢t, and I'(t))=
I(t)+ I(t). Let (Y,q)€ M(S —{to}, I',{ths}.er). Let W be an assignment such
that for each t €S — {to}, 0= W(t)= Y(t) and Z,c5-19 W(t) = I(t,). By Lemma
1, the uniform boundedness of the gradients of the u,’s on compact sets, and the
mean value theorem, there is a real number m > 0 such that for each t € S — {t,},
w(Y()— W)= u(Y ()= ~ m || W(t)|., where |-|; denotes the Euclidean
norm. Let B be a finite upper bound for the u,’s. Then
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w(V(S)= V(S —{t})

=B+ X }u.(Y(t))—'EZ w(Y(1)— W)

=R S—{to}

=B+m D ﬁjvv,(t)=B+m2‘,I,-(to).

teS—{to} j=1
Note that Lemma 7 implies maxscr,es|@(V(S)— V(S —{1}))] is finite.

Lemma 8. Let (X,p)€ M(T, I {w}er) and let n € *N — N. Then almost all
coalitions SCT with |S|=n have the property that (1/n)Z,esX(t)=
(1/n)Z.es(t) = 0. (Here “almost all”’ means that if & is the set of coalitions of size
n and ¥, is the subset for which the theorem is false, then | %,|/| ¥|=0.)

ProOF. Let 8 = n%, For each k € N, k8 =0, where d is the dimension
of the commodity space. Fix yE*N—-N so that y*§=0. Let L=
maX.er (|| X (2)||+ | I(t)]| + 1), and let B be the box defined by

B={f€*Q,:0=% <LVj=d)}.

Let B be the set of infinitesimal boxes of the form
{)EEB:%L §J2,<l—(1:—1 }

where for each j=d, 0=k; =y -1, and k; €*N.

Divide T into equivalence classes called types: ¢, and ¢, are of the same type if
X (t;) and X (1.) are in the same box in & and if I(t,) and I(t,) are in the same box
in &B. Let m be the number of types in T; clearly m =< y* Order the types and
let n, 1=i=m, be the ratio of the number of elements of the i-th type to
|T|= w.

By Chebyschev’s inequality, the probability is at most 1/4n8 of obtaining an
internal random sample S of size n from T for which the ratio s; of the number
of elements of type i in S to n differs from r, by at least 8. That is,

P(|s —r|=8)=1/4n8> = 6¥4,

since §=n"% Let $={SCT:|S|=n}. We have shown that there is a
set $oCF with ||/ F|=(8°/4)y** =0 so that for each SE€E ¥ -,
max; s —r|<é.

Choose one representative # € T for each type. Using the ordering on T, let
be the j-th element in the i-th type; let @; = X (t;)— X(t) and B; = I(¢;)— I(&).
Clearly, || &; || =0 and || B, || = 0. Given S € &, and s, the ratio of the number of
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elements in S of type i to n, let j; run through the elements of type i in S when
s;#0. Then

=3 X(0)-10)

= % ‘g;‘o ,21 [(X(8)+ a)— )+ By

m

= 2 s(X(6)- )+~ 3 E(a., Bi).-

=1 nls;‘On

Since n is at least the number of terms in the second sum on the right side of the
last equation and the average of infinitesimal vectors is infinitesimal, we have

=3 (XO-T0) = 2, 5(X(0) = 1(8).
By similar reasoning, we have
=1 3 x-10= F nix - 10).
Now if S$€ ¥ — F,, then

30+ (5= ) X0~ 1)

[+3 xw- 1] -
< max|s —n|-max|| X (&)~ I(t)]- m

< &y* -max|| X (t)— I(6)[=0
On the other hand,

Z (I(5)+ By)

€|~
ll

0

nl(1)>0,

I
-

' g |—
Mi "Mi

and similarly,
1 m
- > I()y= 72 sI(t).
tes i=1

Since
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R ’f>1(tf)“é 8y* - max|| 1(1)]| =0

= 2 I(t)=0.
teES
ProrosITION 2. Given a family of utilities {u.}.cr as in Proposition 1 and the
corresponding game V, if (X,p)€ M(T, L{u}.er) then for all t, € T and for
“almostall” S CTwehave w(V(S)— V(S —{to})) = u (X (1)) + p - (I{tc) — X (t0)).
Thus,

ev(to) = E[V(S)— V(S —{t})] = %[uno(X(to))+ P (I(t) = X(t)) + £],

where ¢ = (. (Here E is the expectation operator for the probability measure on the
class of the subsets of T which contain t, such that each size is equally likely and
for any given size, each set is equally likely.)

Proor. The formula for the Shapley-value is given by transfer as

pu(t) == 2 ) (RCTZ_M [V(R U{ta}) - V(R)]>-
j

IR|=jf

Fix k € *N — N such that k/w = 0. Since by Lemma 7, o (V(R U {t.})— V(R))
has a finite upper bound, we have

wpu(t)=2 S 2| 5 [vRUW)-VERY).
i=k ( ] 1) R'C‘;I";(ilo)

For infinite coalitions R, e.g., | R | = k, we can apply Lemmas 6, 7, and 8 and
obtain for fixed j = k

G - ) o [VR U i) = VR = u(X (1) + b - (1(ts) = X ().
]' IR|=j

Therefore

w0ov (1) = 2K [u(X (o)) + - (1(80) — X(t)]

= Uy(X(80)) + P - (1(20) = X (1))

We now prove part b of the Theorem: If Y is a value allocation with respect to
an appropriate family of utilities, then Y is a competitive allocation.
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If Y is a value allocation with respect to a family of utilities as in Proposition 1,
then by definition

5 2 u(YW)= 3, 0v(0) = V(T) == 5 u(X(t)

t1ET

where (X, p) € M(T, I, {u.};er). Thus there exists by Lemma 3 a set T, C T with
| To|/| T|=0such thatforall t € T — To, u,(Y(t))= u (X (t))+ p - (Y(t)— X(2)).
Hence by Proposition 2,

u(Y(@)=u(X@)+p -(I()= X()+p-(Y(t)-I(t))

=owlev()]+p - (Y()- I(1)).
Therefore,
wey(t)=u(Y()+p-(I(t)- Y(1))

forall t€ T - T..
We claim that p- Y(¢)=p - I(t) for almost all t € T. Let

S ={teT-Te:p-Y()zZp-I(t)+1/n}
and

U ={eT-Te:p-YO)=p-I(t)—1/n}.
Then S, CS.., and U, CU,., for each n € *N. Assume that | S, |/|T— T,|=
1/n; then by definition,

=T u(YO)= T, o)== 3 @ (YW)+5- (0~ Y1)+ e,

tES,

where g =0. Thus, (l/w)Z.es,p-(I(t)— Y())=0. But p-I(t)-p-Y(1)=
—1/n for all t € S,, so

%; p-I(t)- Y(t))él%[(— 1/n)s —1/n?,

which is impossible if n € N. Therefore, for some v E*N - N, |S, |/| T — To| <
1/v and similarly |U,|/|T - To|<1/v. That is, p- Y(t)=p - I(t) except for
teS, UU,UT, Thus, given tET—[S,UU,UT,) and y €E*Q, with p-y =<
p - I(t), we have p-y <p- Y(t), whence

u(y)— w (Y1) = [ (¥) — u (X ()]~ [w (Y (1)) — (X (1))]

Sp-(-XO)-p-(YO-X()=p-(F—Y(t)s0.

That is, u,(¥)= u,(Y(1)).
We now prove part a of the theorem.
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Let (Y, p) be a competitive equilibrium. Let {iZ },cr be a representing family of
utilities essentially concave in *B, (0) where if y, = [max,crp - I(t)/min;s;zaf;],
v =°(1+ v,). Let X(¢) be a point maximizing & (¥) on the budget hyperplane

By(t)={y €*Qu:p-§=p-1(} C*B,(0).

Since (Y, p) is a competitive equilibrium, there exists T, C T such that for all
t€T—T,, t(Y())=10d,(X(t)) and | To|/| T |=

Given tE€ T, let j, be the first j=d such that X (t)>0, and let a, =
P/ @ (X(t)). Then =0 is finite since p=0 and Vi x) =0 and V, i (%) is
finite when ¥ € B;(t). Let u, = aii,; then Vu,(X(¢)) = p,. Let £ = X(t), and for
JZJjo ix yE*Q, with p-y=p-I and y, = % if i#j and i# j,. Then

Vu (x) - (§ = %) = p(¥i— %) + Viuu(X) - (7 — %) =0,

since the directional derivative at X(¢) along the budget plane is =0. But
Pol¥o— %) = — Bi(¥; — %;), so Vau () (3 — %) — p(§, — %) =0. If X;(¢)>0, then
P = Vu.(x). Otherwise we have Vu,(X) = p;

We now have for any y € *Q,,

w(y)—uw(X@)=p-G-X@)=p-y-p-1(t),

forall t€ T.
Let (Z,§)€ M(T, I,{u},er). Then

S w(ZO)- u(XW)= 35 (Z0-11)=5- 3 Z()-1(1)=0,
and so

S uZE)S 2 3 WX W) =2 3 u (Y ().

teT

On the other hand,
- 2 (YO - w(ZO) 5= 4 (Y- Z(0)
=3 |y Svo-zom)]=a-[L 3,00 -10)]=0

Hence (1/w)z‘ETu,(Z(t)):(I/w)E,eru,(Y(t)) which  implies that
(Mo)Zeru(Z(t))=(1/w)Z.cru,(X(1)). Since

p- (’ IZ(X(t) Z(t))) (,—;TIET(XU)—I(;))):
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we can use the proof of Lemma 3 to show that for almost all ¢t € T,

u(Z(@)—u (X)) =p-(Z(t)- X(1)).
But for all t € T and all X € *Q,,

u(X) = u(X@)=p - (X~ X(1));

hence u,(X)— u.(Z(t))< p - (¥ — Z(t)) for almost all ¢t € T. Using the argument
at the end of the proof of Lemma 5, we see that p = q.
By Proposition 2, if V is the game associated with {u, },cr then forallt € T,

wlev(O)]=u(Z@)+q-I(t)= Z()).
But for almost all t € T,
u(Z()+q - (I()= Z() = u(Z@)+p - (X(t)— Z(1))
+p - (I(t)— X(1)) = u(X(1)).

Therefore, w[@v(t)] = u,(Y(t)) + & where ¢ =0 for almost all t € T and &, is
finite for all t € T by Proposition 2.

Hence for all S CT, Z,cs5¢v(t)={(l/w) Z,esu, (Y (2)). That is, Y(¢) is a value
allocation.

This completes the proof.
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