
ISRAEL J O U R N A L  OF M A T H E M A T I C S ,  Vol. 25, 1976 

THE VALUES OF 
N O N S T A N D A R D  E X C H A N G E  ECONOMIES* 

BY 

DONALD J. BROWN AND PETER A. LOEB 

A B S T R A C T  

R. J. Aumann has stated and rigorously proved the value equivalence theorem 
for exchange economies with a non-atomic continuum of traders. The analogous 
result is established here for nonstandard exchange economies using Abraham 
Robinson's calculus of infinitesimals. The proof is patterned after a short 
heuristic argument given by Aumann. 

I. Introduction 

In [1], Aumann stated and rigorously proved the value equivalence theorem 

for exchange economies with a non-atomic continuum of traders. Since the proof 

was complex and involved, he also gave a heuristic argument. His nonrigorous 

argument is based on a naive notion of infinitesimals. We shall prove a value 

equivalence theorem for nonstandard exchange economies, using Robinson's 

calculus of infinitesimals, i.e., nonstandard analysis. Our argument follows 

closely Aumann ' s  original intuitive argument. 

Nonstandard exchange economies and the associated nonstandard concepts of 

the core and competitive equilibrium were first defined in Brown-Robinson [3]. 

In that paper, they proved the equivalence between the nonstandard core and 

the set of nonstandard competitive allocations, i.e., an allocation is in the core itt 

it is a competitive allocation. In a second paper [4], using the core equivalence 

theorem for nonstandard exchange economies, they showed that core allocations 

in large standard economies are approximate competitive allocations. The 

interested reader is referred to either of these two papers for an introduction to 

nonstandard analysis and a discussion of nonstandard exchange economies. 

We should note that the existence of a value allocation follows from the value 

equivalence theorem, and the existence of nonstandard competitive equilibria 

shown by Brown in [5]. 

+ The research in this paper was supported in part by the National Science Foundation and the 
Ford Foundation. 
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Before  stating and proving our  ma jo r  theorem,  we shall need  the following 

definitions. 

lI. Definitions 

Let  *Rd be the d- fo ld  Car tes ian  produc t  of *R, the nons tanda rd  extension of 

R, and *l-ld be  the posi t ive o r than t  of  *Rd. If ~ and )7 are vectors  in *Rd, then we 

shall write s --- )5 when the dis tance be tween  x and y is infinitesimal in the metr ic  

def ined by the sup norm~ ~ = )7 means  x, => y, for  all i; s > )7 means  s --- )7 and 

xi > yi for  some  i ; ~ >> )7 means  x, > y~ for  all i. ~ ~ )7 means  x, >= y, or  x, = y~ for  

all i; ~ ,  ] means  s ~> )7 and x, is g rea te r  than y, by a noninfini tesimal  a m o u n t  

for  some  i ; ~ )7 means  x, is g rea te r  than y, by a noninfini tesimal  a m o u n t  for  all 

i. The  vec tor  which is 0 in all c o m p o n e n t s  except  the i - th and 1 in the i - th is 

deno ted  by ~'. 

By the no rm of a vec tor  s = (-~h'" ", ~d), we mean  the sup -no rm II x II = 

maxt~j~_d[.fi I. A nons tandard  vec tor  is said to be  finite or  nea r  s tandard  if its 

sup -norm is less than some  s tandard  number .  If s is a finite vector ,  then there  

exists a unique s tandard  vector ,  called the s tandard  par t  of s deno ted  by os 

where  ~ = ~. 

*N will deno te  the nons t anda rd  extension of N, the integers,  and * N  - N is 

the set of infinite integers.  If 8 is an infinitesimal, then we shall of ten write 8 = 0, 

with similar nota t ion  used for  infinitesimal vectors.  

Let  T be  an internal  star-finite set. T will be  called the set of t raders  or  agents.  

We  shall always assume that  T is infinite, i.e., the internal  cardinal i ty I TI  = 

w E * N - N .  
A coalition is an internal  subset  of t raders .  

A coali t ion S is negligible if IS  I/~o-~ 0. 

All agents  are assumed to have  the same  consumption set which is *f~d- 

An assignment is an internal  m a p  f rom T into *lid. 

A t rader  is def ined by his initial endowment, an e l emen t  of *l~d, and his 

preference relation, a binary relat ion on *l'ld. 

A nonstandard exchange economy, if, is a pair  ( I , P )  where  I(t) is an 

ass ignment  and P ( t )  is an internal  m a p  f rom T into the family of internal  b inary 

rela t ions on *~d. We  will of ten deno te  P ( t )  as >,.  Tha t  is, > ,  is the p re fe rence  

relat ion of t rader  t and I(t) is his initial endowmen t .  

An  allocation, X, is an ass ignment  such that  X(t)  is finite for  each t ~ T. It 

follows that  the norm I[ X(t)[I is uni formly  bounded .  

An ass ignment  X is feasible for a coalition S if 
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1 1 
Is I x ( t )  = 

An assignment X is strictly feasible for a coalition S if 

1 ~ X(t)= 1 
IS [,~s -~[ ,~s I(t) ,  i.e,, ,~s ~'~ X ( t )  = E,~s I ( t ) .  

If S = T, then we will say that X is feasible or strictly feasible. 

If s then $ > ,  >)7 iff for all f f - = ~  and for all z?=)7, ff>,~.. If 

/5 E *I~d, then 

Bo(t )= {~ ~ *~d : P " ~ <~ p " I(t)}.  

Given a feasible allocation X(t ) ,  ( X , p )  is a competitive equilibrium for the 

economy g' = (I(t) ,  {>,},~r) iff/~ is f i n i t e , / ~  0 and there exists a coalition To, 

with I 7"ol/I T I = 0, such that for all t E T - To, X ( t )  E Bo (t) and y C Bp (t) for 

any 9 > ,  > X(t ) .  If (X,/5) is a competit ive equilibrium, then we say that X is a 

competitive allocation and/5 is a competitive price system. 

If >,  is a preference relation over *f~d, then a utility (function) for >,  is an 

internal map u, : * f~ ~ *R such that for all ~, )7 E *~d, ~>,)7 iff u,(~) > u,()7). If 

{>,},~r is an internal family of preference relations, then an internal family of 

utilities {u,},~ is said to represent {>,},~r if for each t E T, u, is a utility function 

for >,. 

If {u,},~r is a representing family for {>,},~r, then g' can be expressed as 

(I(t),{u,},~r). We now use g' to define a star-finite internal game ~d, in 

characteristic form, over T. Let 5 ( T )  be the family of internal subsets of T or 

coalitions of T. Then ~ = (V, ~ ( T ) )  where V : ~ (T)---~ *R is defined as follows: 

Given S E 5 ( T ) ,  V ( S )  = max(1/~o)E,~su,(Y(t))  where Y ranges over all assign- 

ments with Y,~s Y( t )  <= Y,~sI(t) .  

The Shapley-value is an a priori evaluation of a finite game for each player. A 

brief discussion of the Shapley-value and its properties is given in Appendix A of 

[2]. By transfer, the Shapley-value of ~ is well defined and we denote it by ~,v. Of 

course, ~3 and hence Cv depends on {u,} ,~ and in general different representing 

families define different games. 

A value allocation with respect to g' = (I(t) ,  {u,},~r) is a feasible allocation X 

such that for each S E 5 ( T ) ,  E,~sCv(t) = (1/w)E,~su,(X(t)) .  It is important  to 

note that a value allocation depends on the representation of the preferences 

Debreu [6] defines a (standard) smooth preference relation over f~a as a binary 

relation over f~d having a quasi-concave C 2 standard utility with a strictly 



74 D.J. BROWN AND P. A. LOEB Israel J. Math. 

positive gradient and indifference surfaces with everywhere positive Gaussian 

curvature. 

A uniformly smooth family of (standard) preferences was first defined by 

Aumann [1]. In particular, he considered the following example of a uniformly 

smooth family, which we shall call a precompact smooth family. A family of 

standard utilities {u~},~s on Od (i.e., for all s E $, u~ : iqd---~ R)  is said to be a 

precompact smooth family if: 

a) Each u~ is smooth (in the sense of Debreu),  the bounds on compact sets 

being uniform over S. 

b) The u~ are bounded over I~a uniformly in s. 

c) {u~}s~s is contained in a compact subset of the space q/ of C 2 utility 

functions on iqd endowed with the topology of C~-uniform uniform convergence 

on compact sets. 

If s ~ I~d, then a C ~ utility (function) u on l'~d is called concave over l'~d at 

(or concave at ~) if for all )7 E f~d, U()7)-- U(s =< Vu(~)- (~ - ~) where Vu(s is 

the gradient of u evaluated at ~. 

III. Assumptions 

1) ITI=  *N-N. 
2) I(t)  is an allocation. 

3) (1/to)Y.,~TI(t) ~ ~). 
4) For all t E T, I( t)  ~ (). 
5) The preferences {>,},~r are represented by an internal family of utility 

functions {U,},~T where {U,},~T is contained in the nonstandard extension of a 

family ~ of standard utility functions. 

Aumann in [1], lemma 15.1, has shown that if {u,},~s is a precompact smooth 

family of standard utility functions, then for every T > 0 there exists a family of 

utilities {ti,}~,s such that: 

a) The t~ are uniformly bounded. 

b) The ti, are C a on lqd. 

C) The gradients Vt~, are, on compact sets, uniformly bounded and uniformly 

positive, i.e., for every compact set K there exists vectors ti and b, where ti >> 

and b>>0 such that for all s E S ,  for all )TEK, fi_-<Vas(y)_-</~ 

d) Each t~ is concave over I~d at each ~ such that tt ~ II--< 3'. 

A family of utilities satisfying (a), (b), (c), and (d) above shall be called 

essentially concave in B,(0) = {~ E f~d :ll II---- v}. 
By a representing family of utilities {u,},~ T we shall mean a family 
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satisfying Assumpt ion  5 such that  the s tandard  utilities a, in ~: satisfy at least 

Proper t ies  a, b, and c above  and ~ is compa c t  in the topo logy  of C L u n i f o r m  

convergence  on compac t  sets. If P rope r ty  d also holds, we shall say that  the 

family {u,},~T is essentially concave  in *B~(0). 

IV. Statement of the Theorem 

Let  b e = (I( t) ,  {>,},~r)  be  a nons t anda rd  exchange  e c o n o m y  satisfying the 

assumpt ions  in Section I I I .  

THEOREM. a) Given a nonstandard competitive allocation X for be, there is a 

3' > 0 such that if {u,},~r is a representing family of utilities essentially concave in 

*B~(~)), then there is an internal family of weights {a,},~r with ~,>>. 0 for each t 

such that X is a value allocation with respect to the family of utilities {a,u, },~r. 

b) I f  {u,},~r is a representing family of utilities and X is a value allocation with 

respect to {u,},~r, then X is a competitive allocation. 

V. Proof of Theorem 

LEMMA 1. Let {U,},~T be a representing family of utilities. Given a coalition 

S C T and an allocation Z( t ) ,  let ~ = {Y:  Y is an assignment and E ,~sY( t )  <- 

E,~sZ(t)}.  I f  X E ~ and E,~su,(Y(t))<=E,~su,(X(t))  for all Y ~ ~, then 

i) For every v E *N - N, max,~s II X(t)II < ,', Thus m a x , e s  I Ix ( t ) l r  is finite. 

ii) There exists ~ E *lid such that 

o~) p is finite and ~ 8 ,  
[3) Given t E S ,  if X j ( t )~O,  then ~ j=Vju , (X( t ) ) ,  and if X j ( t )=O,  then 

pj > Vju,(X(t)) .  

PROOF. Suppose  for  some  s E S  and j<-<_d, Xj(s)>=v where  v E * N - N .  

Then  [ S I E * N - N  since Z is an al location and X E ~ .  Let  A ,  = 

{t ~ S : II x( t ) I I  < n}. I l i A ,  l is finite for  all n E N, then there  exists a p E * N  - N 

such that  lAp [/I S I '/2 = 0 and P/I S I ''2 = 0. Le t  II x Ill = Y-~=, x~ if s E *lid. Since 

p re fe rences  are monoton ic ,  we have  E,~sX( t )=  E,~sZ( t )  so E,~s Ilx(t)[[ ,  : 

~,~s II z(t)II1. But  

1 1 
I s I y~ II x(t)11, = ]-~ ,T_, II x(t)[I, 

t~S tEA~, 

+ I-~ ,~s~A,, II x(t) II, = ~--~[ ~s_/Jx(t)II,>=IS-Ap]o>I 
, ~  =~P" Isl 
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This contradicts the finiteness of (1/I S I)E,~slIZ(t)ll~. Hence,  for some no E N, 

I A-ol E *N - N. Let 0 = min (~,, I A~o I); choose B C A,~ with I B I = (9, and define a 

new allocation 

(X ( t )  + ~ for t ~ B  
W ( t ) = ~ X ( t )  - 0 ~  for t = s  

LX( t )  otherwise. 

Since the u, are standardly bounded, u~(X(s)) and us(W(s)) differ by only a 

finite amount.  The u, are near  standard on any compact  standard set, hence 

they are near  standard on (~ E* / /u  :ll~ll_-<max,~o II w(t)ll). Therefore,  

min,~B [u,(W(t))-  u, (X(t))] ~> 0, and E,~su,(W(t))~, E,~su,(X(t)) which con- 

tradicts the definition of X(t). Thus, for every v E *N - N, max,Es II x(t)ll  < ~. 
For part (ii) of the lemma, suppose for some j =< d and s E S that Xj(s) > 0 .  

Define a vector A~ where A~ = 0 for i / j  and A~j = 8 with 0 <  8 < Xj(s). If  

r E S and r / s ,  then the assignment Y(t) where Y(t )= X(t)  for t / s  or 

r; Y ( s ) = X ( s ) - A ~ ;  and Y ( r ) = X ( r ) + A ~  belongs to cr Therefore,  

E,~su,(Y(t))<= ~,,~su,(X(t)). Thus, 

u,(X(r)+ A ~ ) -  u,(X(r)) <= u , (X(s) ) -  u , (X ( s ) -  A ~) 
8 8 

which implies that Vju,(X(s))>=Vju,(X(r)). If X j ( t ) = 0  for all t E S, let /~j = 

max,Es Vju,(X(t)). If there is a t E S with X~(t) > 0, let pj = Vju,(X(t)). Clearly, p 

is well defined and t3j _-> V~u,(X(t))>=O for all j _-< d and for all t E $. 

By part (i), X(t)  is finite for all t E $ ,  thus, for all j_-<d and s ~ S ,  

Vjus(X(s))~-V~176 Hence,  for each j<-d, ff~>>,O and maxsEs 

Vjus(X(s)) is finite, i.e., p is finite. 

DEFINITION. Given S, Z ,X,  {u,},~r, and /~ as in Lemma  1, we write (X, /~)~  

~(s,Z,{u,}t~T), and we say that X maximizes utility for S. 

PROPOSITION 1. Let {U,},~T be a representing family of utilities, i.e., ~ satisfies 
the assumptions of Section III. Given a coalition S C T with I S I ~ * N - N and an 
allocation Z ( t ) with 

1 ~ , Z ( t ) ~ O  
Is l  

let (X, p) E Xt(S, Z, {U,},~T). Then for each ~ E *f~u and t ~ S, 

u,(;)- u , ( X ( t ) )  p . ( y  - x ( t ) ) .  



Vol. 25, 1976 VALUES OF E X C H A N G E  E C O N O M I E S  77 

For  the proof  we need the following lemma given the hypotheses  of the 

Proposit ion.  

LEMMA 2. I r A  is a finite vector, there is an allocation W such that Y-,es W ( t )  = 

A,  for each t E S and j <= d, Wj ( t ) = 0 and Wj ( t ) = 0 if Xj ( t ) ~- O, and moreover 

Y. u,(X(t) + w ( t ) ) -  u,(X(t)) = p .  
t ~ S  

PROOF. Since the utilities are increasing 

1 1 

For  each j _-< d, let Sj = {s E S : Xj(s)  _-> zTf12}. Then  IS,. I E *N - N. Let  Wj(t) = 

AJ/I Sj I if t E S,, and let Wj(t) = 0 otherwise.  By L e m m a  1 and the proper t ies  of 

if, there  exist for  each t E S a vec tor  g(t)  = 0 such that 

u , ( X ( t ) +  W ( t ) ) -  u , (X( t ) )  = (p + g(t))" W ( t ) .  

Lett ing c0 = max,~s II g(t)II, we have 

[ I ' ' ~ g ( t ) . W ( t )  ~ eo ~', ~ I Wj(t)l  = e 0 ~  I ~ j  I = 0. 
t E S  t E S  j=l  j~l  

The  rest is clear. 

PROOF OF PROPOSITION. Assume there  is a )7 E *fld and a to E S for which the 

proposi t ion is false. The  utilities are bounded ,  X(to) is finite, and/~ ~ 0, so )7 is 

finite. Choose  W ( t )  as in L e m m a  2 for t E S -{ t0}  so that E,~s_{,o)W(t)= 

)7 - X(to). Then  

~_, u , ( X ( t ) -  W ( t ) ) -  u , (X( t ) )  = - ~ .  ( ;  - X(to)),  
t~S-{fo} 

while by assumption,  

u~(X (to) + ( ;  - X (to)) - u~(X (to)) >, f t .  ( ;  - X (to)). 

This contradicts  the definition of X. 

LEMMA 3. Given S C T where I S I E *N - N, let (Y,  p)  E ell(S, I, {u,},~r). A s -  

sume (1/I S I ) X , e s Y ( t ) ~  O. I f  X is a [easible allocation [or S such that 

(1/I S ]) '~ ,~su, (X( t ) )= (1/I S [)Y.,Esu,(Y(t)),  then there exists an S o C S  with 

J Sol/I S I= 0 so that for all t E S -  So, u , ( X ( t ) ) =  u , ( Y ( t ) ) + p . ( X ( t ) -  Y( t ) ) .  
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PROOF. Since X and Y are feasible on S, p .  (1/I S I)Y.,~s ( X ( t ) -  Y(t) )=  0. 

Let 

S. = {t E S : ut(X(t))  - u,(Y(t))<= p" ( X ( t ) -  Y ( t ) ) -  l /n} .  

Clearly, S. CS.+, for each n ~ *N. If n E N and IS. ]/[ S I=  > 1/n, then 

1 i~s(u,(X(t))- u,(Y(t)))~ ,~(p. (x(t)- Y(t))- l/n) Is 

+ ~,~,~,~s-s.X p .  ( x ( t ) -  g(t))  = p .  ( x ( t ) -  g(t))  - I s l  "-n - n ~" 

Hence, 
1 1 ~ u t ( X ( t ) ) < _ ~  I ~_~ u t ( Y ( t ) ) _ l / n  2. 

I S l , ~  t E S  

But this is impossible. Therefore, there is a v E *N - N with IS, 1/1S ]< 1/v. It 

follows from Proposition 1 that for all t E S -  S~, u , ( X ( t ) ) -  u , (Y ( t ) )=  
p .  ( X ( t ) -  Y(t)).  

LEMMA 4. Let S be a subset of T with I S l E * N - N ,  and let X be an 
allocation which is feasible on S such that (1/I S ])X,~sX(t )~O.  Then there is an 
allocation Z ( t ) which is strictly feasible on S such that Z ( t ) = X ( t ) for all t E S. 

PROOF. Let aj = (1/1S ])E,~sXj(t) and let Ai = {t E S :X j ( t )=  > ai/2}. Then 

I Aj I/I S I ~ 0. For each t E S and j <= d, let 

Zj(t) = I Xj(t) + T ~ J  ] '~s( /J(s)-  X j ( s ) ) i f t ~  A i 

lXj( t )  otherwise. 

Since IS [/[ Aj] is finite and (1/1S [)E,~s ( / / ( t ) -  X j ( t ) ) -  0, Z/(t) = Xj(t) for all 

j =< d and all t E $. Clearly, Z( t )  is strictly feasible on S. 

LEMMA 5. Let (X, f f )E  ~ ( T ,  L{u,},~-) and let S be a subset of  T such that 

[ S I E * N - N ,  X is feasible on S, and (1/[S[)~,,~X(t)~8. Let (Y,~I)E 
~t(S,I,{u,},~r). Then p = ?t. 

PROOF. By Lemma 4, there is an allocation Z( t )  which is strictly feasible on S 

such that Z ( t ) =  X(t ) ,  for all t E S. Therefore, 

T ~ ] ~ s U , ( X ( t ) ) l  < 1 u,(z(t))= 
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On the other hand, (X, f f )EJ/ t(S,X,{u,} ,~r)  and (1/[SI)Y. ,~sY(t)= 

(l/I S I)Y.,~sI(t)= (1/I S[)~,,~sX(t). Again by Lemma 4 (using X instead of I)  
there is an allocation W with ~,,~s W(t)  = E,~sX(t)  and W(t)  = Y( t )  for each 
t E S. Therefore, 

_•]•sU,(Y(t))•_ 1 < 1 
-~1 ~s u , (W( t ) )= ~ X~esU,(X(t)). 

Thus, (1/] S I)E,~su,(X(t))= (1/1S [)Z,~su,(Y(t)),  so by Lemma 3 there exists 
S ' C S  with Is'[/lsl=o, such that for all t E S - S ' ,  u , ( X ( t ) ) - u , ( Y ( t ) ) =  

el" ( X ( t ) -  Y(t)). Applying the same lemma to Y( t )  and (X,/~) we see that for 

some S " C S  with [ S"[/[ S I-=0 we have for all t E S - S", u , ( Y ( t ) ) -  u , (X( t ) )= 

f t .  ( Y ( t ) -  X(t)) .  Let So = S 'U  S", then for all t E S - So, u , ( X ( t ) ) -  u,(Y(t))  ~- 
el" ( X ( t ) -  Y(t))  = p .  ( X ( t ) -  Y(t))  and [So[/] S [= 0. 

For all t E T and for all ~ E *lid, u , ( 2 ) -  u,(X(t))<_p �9 (~ - X(t)) .  Hence for 
all t E S - S o ,  

u , (~ ) -  u , (Y( t ) )= u , (Y ) -  u,(X(t))+ u , ( X ( t ) ) -  u ,(Y(t))  

<~ fi" (~ - X ( t ) )  + f t .  ( X ( t )  - Y ( t ) )  

< fi " ( ~ -  Y(t)) .  

Fix j with l_-<j_-< d. Since (1 / IS[ )E ,~sY( t )~O and I Sol/[S[~-O, there exists a 
tl E S - So with Yj 01) ~> 0. Thus, by part (ii) of Lemma 1, Vju,,(Y(h)) = ~j. On the 

other hand, ~176 6~j)-~176 <-~ for any real 6 with [ 6 ] <  
I~ Thus, /~j = Vi~176 = ~j for each j _-< d. 

LEMMA 6. Given a family of utilities {u,},~r as in Proposition 1, let V be the 
corresponding game and let (X, if) E ~ ( T ,  L {u,},~r). Let S be a subset of T such 
that I S l E  *N - N, X is [easible on S and (1/I S [)X,~sX(t)~O.  Then [or every 
to E S, 

V(S)  - V(S  - {to}) = 1 [u~(X(to)) + p " (I(to) - X(to)) + e] 

where e ~- O. 

PROOF. Let (Y, q) E ~t(S, L {u,},~) and let (Z, l) E ~t(S - {to}, I, {u,},~r). By 
Lemma 5, q =/~ = 1. Moreover, 

Y(to)+ ~ Y ( t ) = I ( t o ) +  ~_~ I(t)  
tES-{to} 1~$-{t0} 
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and there fore  

( Y ( t ) -  Z( t ) )  = ~ ( Y ( t ) -  I(t)) = I ( to) -  Y(to). 
t~s-{fo} t~s-{to} 

By L e m m a  2, there  is an al location W such that  for  each t E S - {to} and j =< d, 

Wj(t)  = 0 and if Zj(t)  = 0, Wj(t) = 0; m o r e o v e r  E,~S_,or W(t)  = I ( to)-  Y(to) and 

u,(Z(t)+ W ( t ) ) -  u,(Z(t))~- -[. (I(to)- Y(to)). 
t ES--{to} 

T h e r e f o r e  

~_~ u,(Y(t)) - ~ u,(Z(t)) >~ l" (I(to)- Y(to)) ~- p ' ( I ( to ) -  Y(to)). 
t~S-{to} t~S-{ro) 

Similarly, however ,  

u,(Z(t)) - ~, u,(Y(t))>~ cl "(Y(to)- /(to)) = - ~ ' ( I ( t o ) -  Y(to)). 
t ES-{t0} t~S-{to} 

Hence ,  

~ u , (Y ( t ) ) -  ~_~ u,(Z(t)) 
IES tES--{tO} 

= us(Y(to)) + ~, u, (Y(t))  - u, (Z(t)) ~- us(Y(to)) + ft. (I(to)- Y(t0)). 
t ~ s - l t o }  

But us(Y(to))= us(X(to))+p" (Y( to) -X( to) ) .  This follows f rom the fact that  

p = t~ and Proposi t ion  1. H e n c e  

t o ( V ( S ) -  V(S -{to}))= ~ u, (Y( t ) ) -  ~ u,(Z(t)) 
t ~ S  t~S-{ to}  

= u s ( X ( t o ) )  + : .  (1(to)- X(to)). 

LEMMA 7. For any S C T and any to E S, t o ( V ( S ) -  V(S  - {to})) is finite. 

PROOF. Choose  t l E S - I t a } ,  and let I ' ( t ) =  I(t)  for  t ~ t l ,  and I ' ( t , )  = 

I(h) + I(to). Let  (Y,,~) E M ( S  - {to}, I ' ,  {U,},~T). Let  W be an ass ignment  such 

that  for  each t E S - {to}, 8 _-< W(t)  <= Y( t )  and ~,~s-~,o~ W(t)  = I(to). By L e m m a  

1, the un i form boundedness  of the gradients  of the u,'s on compac t  sets, and the 

mean  value theo rem,  there  is a real n u m b e r  m > 0 such that  for  each t E S - {to}, 

u , ( g ( t ) - W ( t ) ) - u , ( g ( t ) ) ~ - m  H W(t)ll2, where  JJ'IJ2 denotes  the Eucl idean  

norm.  Let  B be a finite uppe r  bound  for  the u, 's.  Then  
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v ( s  - {to})) 

<=B+ ~ u , ( Y ( t ) ) -  ~ u , ( Y ( t ) - W ( t ) )  
t ~ s - { t o }  f ~ s - { t o }  

d d 

< = B + m  ~ ~ W / ( t ) = B + m ~ I j ( t o ) .  
tES-{to} j=l  j = l  

Note that Lemma  7 implies maxscT.,o~S[W(V(S)- V ( S -  {to}))] is finite. 

LEMMA 8. Let (X, p)  ~ d~(T, I, {u,},~r) and let n E *N - N. Then almost all 

coalitions S C T  with I S [ =  n have the property that ( 1 / n ) Y , ~ s X ( t ) =  

(1/ n ) E,~sI ( t ) ~ ~). (Here "almost all" means that if ~ is the set of coalitions of size 

n and 5"o is the subset for which the theorem is false, then [5"01/I ~ l  = 0.) 

PROOF. Let 8 = n  -~. For each k E N ,  k2dS=O, where d is the dimension 

of the commodity  space. Fix y E * N - N  so that y2aS--0.  Let L = 

max,~T(lIX(t) l l+ IlI(t)ll+ 1), and let B be the box defined by 

B = {s  E *,.0,,~ : 0 -  < _ .fj < L V j  _-< d } .  

Let ~ be the set of infinitesimal boxes of the form 

~ E B :  - < x j <  L 
Y Y ' 

where for each ] =< d, 0 =< kj =< 3' - 1, and k, ~ *N. 

Divide T into equivalence classes called types: tl and t~ are of the same type if 

X(t l )  and X(t2) are in the same box in ~ and if I( t l )  and I(t2) are in the same box 

in ~.  Let m be the number  of types in T;  clearly m <--_ yEa. Order  the types and 

let r, 1_--< i =< m, be the ratio of the number  of elements of the i-th type to 

ITI= ,. 
By Chebyschev's  inequality, the probabili ty is at most 1/4n8 2 of obtaining an 

internal random sample S of size n from T for which the ratio s~ of the number  

of elements of type i in S to n differs from r~ by at least 8. That  is, 

P(J s, - r, I>= 8) <= 1/4n8 2 = 82/4, 

since 8 - = n  A. Let S e = { S C T : I S [ = n } .  We have shown that there is a 

set 5eoCSr with i6eoJllSai<=(8=14)y=~=O so that for each S E 5 r 1 6 2  

max, [ s, - r, I < 8. 

Choose one representative t, ~ T for each type. Using the ordering on T, let tjj 

be the j - th element in the i-th type; let a,j = X ( t , ) -  X( t , )  and/30 = I ( t , i ) -  I(t,). 

Clearly, [[ &,j II- 0 and I[/3,J H = 0. Given S E Sf, and s, the ratio of the number  of 
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elements  in S of type i to n, let j, run through the elements  of type i in S when 

s~ # 0. Then  

L ~  x(t)- I(t) 
!$ t ~ S  

ns i 

=1 E E [(X(t,)+&,,,)-(I(t,)+ fi,,)] 
r~ i:$i#o ji=l 

nsj 

: I = A ~ S ' ( X ( t ' ) - -  I ( t , ) )+l~o i,=~ ~ (&'' - ~'')" 

Since n is at least the n u m b e r  of terms in the second sum on the right side of the 

last equat ion  and the average of infinitesimal vectors is infinitesimal, we have 

2 1 t ~ s ( X ( t  ) --  I ( t ) )  ~ i=l  ' i ( X ( t i ) -  I ( t , ) ) .  

By similar reasoning,  we have 

0 = 1 ~ x(t)-  I(t)= ~ r,(X(t,)- I(t,)). 
Or) t E T  i=1 

N o w  if S ~ SP - 5*0, then 

]]l~s(X,t , - l ( t , ,  ~- ~= (r,+(s,-r,,,,X,t,,-I(t,,,  

~< max, I s, - r, I" max [[ X( t , )  - I(t,)l[. m 

~< 8y 2a �9 max 11X(t~ ) - I(t,)ll = 0. 

On  the o ther  hand, 

and similarly, 

1 ~ I(t) = (I(t,)+~j,) 
O) t E T  i=l "= 

= ~ r,I(t,)~O, 
i=l  

• E  I0)= E s,I(t,). 
t ~ S  i=1 

Since 
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(s, - r,) I (t~) _-< 83'~d" max II I(t~)[I ~ O, 
i=1 

_1 ~ I(0 ~ 6. 
n t ~ s  

PROPOSITION 2. Given a family of utilities {U,},~T as in Proposition 1 and the 

corre, sponding game V, if ( X , p ) E ~ ( T , I , { u , } , ~ T )  then for all toe  T and for 
"almost all" S C Tw e  have to ( V ( S ) -  V ( S  - {to})) = u~(X(to)) + p . ( I ( to ) -  X(to)). 

Thus, 

~v(to) = E[ V ( S ) -  V ( S  - {to})] = 1 [u~(X(to)) + if" ( I ( to ) -  X(to)) + e ], 

where e = O. (Here E is the expectation operator for the probability measure on the 

class of the subsets of T which contain t o such that each size is equally likely and 

for any given size, each set is equally likely.) 

PROOF. The formula for the Shapley-value is given by transfer as 

= ,=, [ c a -  1~ R o, [V(R  U{to})- V(R)] . 
\ J J 

Fix k E * N -  N such that k/ca --O. Since by Lemma 7, t o (V(R  U {to})- V ( R ) )  

has a finite upper bound, we have 

t o r  ~ [ V ( R  Ll{to})- V(R)] to,:k(to-1) RcT-.o) 
j fRrzJ 

For infinite coalitions R, e.g., I R I --> k, we can apply Lemmas 6, 7, and 8 and 

obtain for fixed j _-> k 

ca ~ [V (R  U{to})- V ( R ) ] =  u~(X(to))+ff " ( I ( to) -X( to) ) .  
j tRrzj 

Therefore 

to~v(to) -- ca -___kk [u~(X(to)) +/~- (I(to) - X(to))] 
tO 

- -  u.~(X(to)) + p .  (1(to)- X(to)). 

We now prove part b of the Theorem: If Y is a value allocation with respect to 

an appropriate family of utilities, then Y is a competitive allocation. 
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If Y is a value allocation with respect to a family of utilities as in Proposition 1, 
then by definition 

i ,~ru,(Y(t))= ,~T ~v(t) = V ( T ) =  1,~TU,(X(t)  ) 

where (X, :) E d~(T, L {u,},~). Thus there exists by Lemma 3 a set To C T with 

] Toll] T I= 0 such that for all t E T - To, u,(Y(t)) = u,(X(t))+ tO. ( Y ( t ) -  X(t)). 
Hence by Proposition 2, 

u,(g(t)) = u,(X(t)) + tO. ( I ( t ) -  X(t)) + tO. ( Y ( t ) -  I(t)) 

Therefore, 

= tO[~v(t)] + tO. ( Y ( t ) -  I(t)). 

o,,p,,(t) --- u,(g(t)) + :. (I(0- g(t)) 

for all t E T- To. 

We claim that tO �9 Y(t) = tO �9 l(t) for almost all t E T. Let 

S. = { t E  T -  T0:tO" Y(t)>=tO . I ( t )+ l /n}  
and 

U, = {t ~ T -  To:tO. Y(t)  <= tO . I ( t ) -  1/n}. 

Then S, CS,+I and U, CU.+I for each n E * N .  Assume that IS, I/IT-ToI>= 
1/n; then by definition, 

i ~ u,(r(t))= ~ ~ov(t) =i ~ (u,(r(t))+tO "(l(t)-Y(t))+e,), 
O) t E S n  t ~ S n  (1) t E S n  

where e , = 0 .  Thus, (1/co)E,~s.tO.(I(t)-Y(t))=O. But tO.I(t)-tO.Y(t)<= 
- 1/n for all t E S., so 

Z 
~_~ tO" ( I ( t ) -  Y( t ) )<=L~(  - 1/n)<~ - l / n  2, 

t E S  n 

which is impossible if n E N. Therefore, for some v E *N - N, I S~ I/I T -  To] < 

1/v and similarly I Uv I/I T -  Tol < 1/1,. That is, tO. Y(t) = tO. I(t) except for 

t E Sv U U .  U To. Thus, given t ~ T - [S~ U U~ U To] and 9 E * ~  with tO. 9 ~ 

tO. I(t), we have p �9 y ~ tO. Y(t), whence 

u,(9)-  u,(Y(t)) = [u,(9 ) - u , (X( t ) ) ] -  [u,(Y(t))-  u,(X(t))] 

<~ tO" (Y - X ( t ) ) -  tO- ( Y ( t ) -  X(t)) = tO- (Y - Y(t)) <~ O. 

That is, u , (9 )~  < u,(Y(t)). 
We now prove part a of the theorem. 
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Let (Y,/5) be a competitive equilibrium. Let {a,},~r be a representing family of 

utilities essentially concave in *B~(0) where if yl = [max,~r/5. I(t)/minl~j~a/5~], 
y = ~ + yl). Let X( t )  be a point maximizing ~,()7) on the budget hyperplane 

B~(t) = {)7 E *f~ : p . y =/5.  I(t)} C *B~(8). 

Since (Y,/5) is a competitive equilibrium, there exists To C T such that for all 

t E T -  To, a , (Y( t ) ) - -  (~,(X(t)) and I Tol/I TI=0. 
Given t ~ T ,  let jo be the first j_---d such that Xjo(t)>0, and let a , =  

/5~/V/oti,(X(t)). Then a , ~  > 0 is finite since /5~ 0 and V/ol2,(~)~> 0 and V/o~,(s is 

finite when s ~ B~(t). Let u, = a,~,; then Vjou,(X(t)) =/sJo. Let ~ = X(t) ,  and for 

j r  fix )7 E *l'~d w i t h / 5 - ) 7 = / 5 . 1  and )7~ =s if i g j  and igjo.  Then 

V u , ( ~ )  �9 ()7 - ~ )  = p~( )7~-  ~ ) +  V j u , ( ~ ) .  ()Tj - ~j)  _-< 0 ,  

since the directional derivative at X( t )  along the budget plane is < 0. But 

/5jo()7~o- ~o) = -/sj()Tj - )~j), so Vju,(~) �9 ()7i - xJ)-/5i()7J - ~j) =< 0. If X j ( t ) >  0, then 
/sj = Vju,($). Otherwise we have Vju,(Y, ) <= /sj. 

We now have for any )7 E *flu, 

u,()7)- u,(X(t)) <=/5. ()7 - X( t ) )  =/5.  ; - / 5 .  I( t ) ,  

for all t ~ T .  

Let (Z,~l)EJ/l(T,L{u,},~r).  Then 

u , (Z ( t ) ) -  u,(X(t))  <= ~,/5 . ( Z ( t ) -  I(t)) =/5. ~, Z( t )  - I(t)  = O, 
t E T  t ~ T  I ~ T  

and so 

On the other hand, 

1 _ 
1 ,~r ( u , ( Y ( t ) ) -  u,(Z(t))) < "~ ,~rq" ( Y ( t ) -  Z( t ) )  

: ~1" [1 ,~r  ~ ( Y ( t ) -  Z ( t , , ] =  ~ t �9 [ 1  , ~ r ( y ( t ,  - / ( t , , ]  --- O. 

Hence (1 /o ) )~ ,~ .u ,  (Z(t))  -~ (1/o))E,~-u, (Y( t ) )  which implies that 

(1/o2)E,~-u,(Z(t)) = (1/o))E,~ru,(X(t)). Since 

/5" (~TJ ,~T ( X ( t ) -  Z ( t ) ) ) = / 5 -  (~T[ , ~ ( X ( t , - I ( t , ) )  = O, 
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we can use the proof of L e m m a  3 to show that for almost all t E T, 

u , ( Z ( t ) ) -  , , ( x ( t ) ) =  : .  ( z ( t ) -  x ( t ) ) .  

But for all t E T and all ~ E*l~d, 

u,(~)-  u,(X(t))  <- p . (~ - x(t)) ;  

hence u,(~)-  u,(Z(t))<~ p .(~ - Z(t)) for almost all t E T. Using the argument  

at the end of the proof of Lemma  5, we see that/~ = q- 

By Proposition 2, if V is the game associated with {u,},~r then for all t E T, 

o~ [q~v(t)] -~ u,(Z(t))+ (l" ( I ( t ) -  Z(t)).  

But for almost all t E T, 

u,(Z(t)) + i" ( I ( 0 -  z( t ) )  = u,(Z(t)) + : .  ( x ( t ) -  z(t ) )  

+ : .  ( I ( t ) -  x ( t ) )  = u , (x( t ) ) .  

Therefore,  oJ[~v(t)] = u,(Y(t))+ ~, where e, = 0 for almost all t E T and e, is 

finite for all t E T by Proposition 2. 

Hence  for all S C T, E,~s~v(t) = (1/o~)E,~su,(Y(t)). That  is, Y(t)  is a value 

allocation. 

This completes the proof. 
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